CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Accredited by NAAC with 'A' Grade, Affiliated to University of Calicut

COURSE PLAN M.Sc. Applied Geology EVEN SEMESTER (ACADEMIC YEAR 2020-2021 ONWARDS)

IRINJALAKUDA NORTH P.O., THRISSUR, KERALA -680125

Website: www.christcollegeijk.edu.in,E-mail: office@christcollegeijk.edu.in Phone - Office (0480) 2825258, Principal: 2820005, Res: 2825384, 2828241, Fax: 2831552

LIST OF CONTENTS				
SL No	TITLE	PAGE NO		
1	COURSE PLAN			
	M.Sc. Applied Geology	4-44		
	SEMESTER II			
	2019 ADMISSION			
2	COURSE PLAN			
	M.Sc. Applied Geology	45-84		
	SEMESTER IV			
	2019 ADMISSION			

M.Sc. Applied Geology

		JL	MESIEI			
	Title	Contact Hours	Credits	Internal	External	Total Marks
Core	GEL 2C 05 CRYSTALLOGRAPHY &MINERALOGY	64	4	25	125	150
Core	GEL 2C 06 ECONOMIC GEOLOGY	64	4	25	125	150
Core	GEL 2C 07 HYDROGEOLOGY	64	4	25	125	150
Core	GEL 2C 08 APPLIED PALAEONTOLOGY &SEDIMENTOLOGY	80	4	25	125	150

SEMESTER 2

COURSE PLAN

GEL 2C 05 - CRYSTALLOGRAPHY AND MINERALOGY (SECOND SEMESTER)

M.Sc. Applied Geology

Teacher in charge	Roshini P.P.	Roshin
Course Co ordinator	Roshini P.P.	Roshin

GEL 2C 05 - CRYSTALLOGRAPHY AND MINERALOGY

Lecture hours per week:5, credits: 4

Internal: 25 External: 125, Examination 3 Hours

Objectives:

- The student will learn the basic principles of crystal projections, symmetries and how this is related to the external form, chemical composition, and physical properties of minerals.
- Identification, classification and interpretation of the occurrence of rock-forming minerals will be addressed.

Module1:

Crystallography-Crystalline state -Repetition theory. Translation periodicity of crystals. Basic rotational symmetries and possibility of simultaneous rotational symmetries in different directions of crystals-symmetrical plane and symmetrical lattices.

Derivation of 32 crystal classes. Stereographic projection of crystals.

(15 hours, 25 marks)

Module 2:

Crystal notation- Schoenflies notation. Herman Mauguin symbols-comparison between Schoenflies and International notations.

Calculation of crystal elements to test the knowledge of the application of tangent relation, anharmonic ratios, Napier's theorem and equation of the normal.

X-ray diffraction method- basic principles. X-ray diffractometer- Powder methods- Bragg's law and its application-Calculation of cell dimensions-identification of minerals from X-ray diffraction patterns.

(15 hours, 30 marks)

Module 3:

Plane polarized and cross polarized light; Behaviour of isotropic and anisotropic minerals in polarized light. Double refraction; Refractive index; Birefringence; Interference colours and determination of order.

Conoscopic observations of minerals under petrological microscope: Formation of interference figures; Uniaxial and biaxial interference figures; Determination of the Optic sign of uniaxial and biaxial minerals.

Optical indicatrices of uniaxial and biaxial minerals.

Vibration directions and sign of elongation in minerals. Extinction and extinction angle. Determination of Optic axial angle (2V).

(15 hours, 30 marks)

Module 4:

Structural and chemical principles of minerals: chemical bonds; ionic radii; coordination number (CN).

Structure, chemistry, physical and optical characters and paragenesis of mineral groups: Olivine, pyroxene, amphibole, mica and spinel groups; Feldspar, quartz, feldspathoid, aluminum silicate, epidote, garnet and zeolite groups. Accessory minerals: Apatite, calcite, corundum, scapolite, sphene and zircon.

(15 hours, 25 marks)

Module 5:

Earth mineralogy: Average mineralogical composition of crust and mantle. Mineral transformations in the mantle with depth

(4 hours, 15 marks)

(Crystallography and Mineralogy may be in the ratio of 40% and 60% respectively)

Reference Books:

1. Dyar, M.D., Gunter, M.E., 2007. Mineralogy and Optical Mineralogy. Min. Soc. America, 705p.

2. Demange, M., 2012. *Mineralogy for Petrologists: Optics, Chemistry, and Occurrence of Rock Forming Minerals*. CRC Press (Taylor & Francis Group), 182 p.

3. Nesse, W.D., 2012. Introduction to Optical Mineralogy. Oxford University Press; 4 edition, 384p.

4. Pichler, H., Riegraf, C.S., 2011. Rock-forming Minerals in Thin Section. Springer, 220 p.

5. Deer, W.A., Howie, R.A., Zussman, J., 2013. *Introduction to the Rock-forming Minerals*. Mineralogical Society of Great Britain & Ireland, 510 p.

Objectives:

- The student will learn the basic principles of crystal projections, symmetries and how this is related to the external form, chemical composition, and physical properties of minerals.
- Identification, classification and interpretation of the occurrence of rock-forming minerals will be addressed.

Course Outcome:

- CO1: Derivation of 32 crystal classes and stereographic projections
- CO2: Use of Crystal notations (Schoenflies notation, Herman Maugin)
- CO3: Conoscopic observations of minerals under petrological microsope
- CO4: Understanding the mineralogical composition of Crust and Mantle

Lesson Plan

Unit/ session/hours (time required)	Topics for student preparation (input)	Procedure (process) Student centric method of teaching	Activity	Learning outcome (output)	Assessment
Module 1 Basic rotational symmetries and projections 15 hours	Definitions- Concept of Repetition theory - Basic rotational symmetries- projections	Discussion Lecture Participative learning	Assignment	To understand projections and basic rotational symmetries of crystals.	Evaluation through class test
Module 2 Crystal notations 15 hours	Crystal notations- calculation of crystal elements- X- ray diffraction methods	Discussion Lecture Problem solving method	Note preparation on Crystal notation	To understand crystal notations, crystal calculations.	Evaluation through class test
Module 3 Optical Mineralogy 15 hours	Concept of polarised light- optical properties- optical indicatrix- conoscopic study	Discussion Lecture Participative learning	Identification of optical properties of mineral sections	To understand optical properties of minerals in detail	Evaluation through class test
Module 4 Descriptive Mineralogy 15 hours	Structural and chemical principles of minerals- Detailed study of mineral families	Discussion Lecture Participative learning	Seminar	To understand structural and chemical principles of minerals	Evaluation through MCQ

Module 5		Discussion	Seminar	То	Evaluation
Earth Mineralogy 4 hours	Average mineralogical composition of crust and mantle- Mineral transformations in the mantle with depth	Lecture		understand mineralogy of earth.	through MCQ

9

UNIT WISE BREAKUP

Lecture Hours: 64

OBJECTIVE:

- The student will learn the basic principles of crystal projections, symmetries and how this is related to the external form, chemical composition, and physical properties of minerals.
- Identification, classification and interpretation of the occurrence of rock-forming minerals will be addressed.

Module Number	Торіс	No. of Lecture hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
	Unit Me	odule 1 Basic	rotational symmet	ries and projec	tions
Unit 1	Crystallography- Crystalline state-Repetition theory.	2	To read about basics of crystallography	Lecture using ppt and crystal models	Group Discussion
Unit 2	Translation periodicity of crystals	2		Lecture using ppt and crystal models	Group Discussion
Unit 3	Basic rotational symmetries and possibility of simultaneous rotational symmetries in different directions of crystals- symmetrical plane and symmetrical lattices.	3	To read about unit cell, crystal lattices etc.	Lecture using ppt and crystal models	Group Discussion
Unit 4	Derivation of 32 crystal classes.	5	To read about symmetry elements of a crystal,	Lecture using ppt and crystal models	Explain crystal system

			morphology of a crystal		
Unit 5	Stereographic projection of crystals.	3	To read about the concept of projection	Lecture using ppt and crystal models	Group Discussion
			Module 2 crystal n	otations	
Unit 1	Crystal notation- Schoenflies notation. Herman Mauguin symbols- comparison between Schoenflies and International notations.	5	To study about crystal system thoroughly	Lecture using ppt and crystal models	Crystal model identification
Unit 2	Calculation of crystal elements to test the knowledge of the application of tangent relation, anharmonic ratios, Napier's theorem and equation of the normal.	5	To read about trigonometric relation	Lecture using ppt and crystal models	Problems solving
Unit 3	X-ray diffraction method- basic principles. X-ray diffractometer- Powder methods- Bragg's law and its application- Calculation of cell dimensions- identification of minerals from X- ray diffraction patterns.	5	To read about X-ray diffraction	Lecture using ppt	Group discussion

		Module 3	Optical Mineralog	,y	
	Plane polarized and cross polarized light; Behaviour of isotropic and anisotropic minerals in polarized light. Double refraction; Refractive index; Birefringence; Interference colours and determination of order. Extinction and extinction angle.	4	To read about basics of optical mineralogy	Lecture using ppt, optical microscope, mineral thin section, accessories	Prepare assignment about optical microscope and optical properties of minerals
Unit 1 Unit 2	Conoscopic observations of minerals under petrological microscope: Formation of interference figures; Uniaxial and biaxial interference figures; Determination of the Optic sign of uniaxial and biaxial minerals.	5	To read about uniaxial biaxial minerals	Lecture using ppt	Group discussion

Unit 3	Optical indicatrices of uniaxial and biaxial minerals. Determination of Optic axial angle (2V).	3	To read about anisotropic minerals	Lecture using ppt	Group discussion
Unit 4	Vibration directions and sign of elongation in minerals.	3	To read about slow ray and fast ray also about its vibration directions	Lecture using ppt, optical microscope, mineral thin section, accessories	Group discussion
	·	Module 4	4 Descriptive Mine	ralogy	
Unit 1	Structural and chemical principles of minerals: chemical bonds; ionic radii; coordination number (CN).	2	To read about bonding, coordination number	Lecture using ppt.	Group discussion
Unit 2	Structure, chemistry, physical and optical characters and paragenesis of mineral groups: Olivine, pyroxene, amphibole, mica and spinel groups;	5	To read about mineral properties	Lecture using ppt and mineral specimens	Mineral identification
Unit 3	Feldspar, quartz, feldspathoid, aluminum silicate, epidote, garnet and zeolite groups.	5	To read about mineral properties	Lecture using ppt and mineral specimens	Mineral identification
Unit 4	Accessory minerals: Apatite, calcite, corundum,	3	To read about mineral properties	Lecture using ppt	Mineral identification

	scapolite, sphene and zircon.			and mineral specimens	
		Module 5 E	arth Mineralogy		
Unit 1	Earth mineralogy: Average mineralogical composition of crust and mantle.	2	To read about Earth structure	Lecture using ppt	Draw the structure of earth
Unit 2	Mineral transformations in the mantle with depth	2	To read about earth structure	Lecture using ppt	Group discussion

Teacher in charge: Roshini P.P.

COURSE PLAN

GEL 2C 06 – ECONOMIC GEOLOGY (SECOND SEMESTER)

M.Sc. Applied Geology

Teacher in charge	Asha Merin Jolly
Course Co ordinator	Roshini P.P.

GEL 2C 06 – ECONOMIC GEOLOGY

Lecture hours per week: 5 Credits: 4

Internal: 25 External: 125 Examination 3 Hours

Objectives:

- Students become familiar with formation of a wide range of mineral deposits and fossil fuels, including recognising the overall geometry, zonation and alteration patterns associated with specific classes of metallic mineral deposits
- Evaluate different processes of element enrichment by fluids and melts to from ore bodies.
- Students learn about the fundamentals of mineral prospecting, exploration of minerals and fossil fuels.

Module1:

Ore, Tenor, grade and specification for minerals.

Classification of ore deposits - Lindgren and Bateman classifications

Ore microscope- polishing and mounting of ores. Physical and optical properties of important ore minerals. Textures and structures of ore and gangue minerals. Fluid inclusions studies

(15 hours, 25 marks)

Module 2:

Metallogenic epochs and provinces, Strata bound and stratiform ore deposits - distribution, form, setting and origin. Mineralization at plate boundaries, Ore forming solutions and their migration. Wall rock alteration.Major theories of ore genesis. Paragenetic sequences, Zoning, Controls of ore localization.

(15 hours, 25 marks)

Module 3:

Ores in igneous rocks - ores of mafic and ultramafic associations - Ultra mafic-mafic Chromium platinoid associations - form, distribution, setting, constitution and origin. Ores of Felsic associations – the carbonatite associations - form, distribution, setting, constitution and origin. Anorthosite - Fe- Titanium oxide association, distribution, form, setting, Constitution and origin

(15 hours, 30 marks)

Module 4:

Genetic classification of U and Th deposits. Geology and genesis of U deposits of Jaduguda. Pb-Zn deposits of Rajasthan, Cu deposits of Singhbhum and Malanjkhand, East Coast Bauxite, Iron ore deposits of Bailadila and Kudremukh. Strategic, critical and essential minerals of India. National Mineral Policy of India

(4 hours, 15 marks)

Module 5:

Coal Geology classification, petrography, genesis and periods of coal formation Distribution of coal fields of India, Neyveli Lignite Field. • Petroleum Geology Introduction- physical properties and chemical composition, occurrence and origin. Source materials and source locations -conversion to petroleum. Reservoir rocks classification of reservoir traps -general, structural, stratigraphic, salt domes. Distribution of oil fields in India. • A brief introduction to gas hydrates.

(15 hours, 30marks)

(Theory and practical may be in the ratio of 70% and 30% respectively)

Reference Books:

- 1. Anthony, M. Evans, An introduction to Ore Geology, Blackwell Scientific Publication, 1980
- 2. Ashok Mukherji, Ore Genesis A Holistic approach, Prentice Hall, Calcutta
- 3. Bateman A. M., Economic Mineral Deposits, Wiley, 1962
- 4. Brian Mason, Principles of Geochemistry, Wiley, 1966
- 5. Brown, J. C, and Dey, A. K., India's Mineral Wealth, Oxford, 1936
- 6. Cameron, E. N., Ore Microscopy, Wiley, 1961
- 7. Edwards, A. B., Textures of the Ore Minerals, Aus. Inst. Min. and Met. 1960
- 8. Jenson and A. M. Bateman, Economic Mineral deposits, 111 Edn. John Wiley
- 9. Krauskopf, K., Introduction to Geochemistry, McGraw Hill, 1967
- 10. Levorson, A. I., Geology of Petroleum, McGraw Hill, 1958
- 11. Lindgren, Mineral Deposits, McGraw Hill, 1933
- 12. Nininger, R. D., Minerals for atomic energy, von Nostrand, 1956
- 13. Park C. G., and Mac Diarmid, R. A. Ore Deposits, Freeman, 1964
- 14. Rankama, K., and Sahama, T. G., Geochemistry, Chicago Uty. Press, 1949
- 15. Stanton, R. K., Ore Petrology, McGraw Hi 11, 1972
- 16. Tissot, B. P., and Welta, D. H., Petroleum formation and occurrence, Springer Verlag, 1978
- 17. Van Krcsalon, D.. Coal, Elsevier, 1961

Objectives:

Students become familiar with formation of a wide range of mineral deposits and fossil fuels, including recognising the overall geometry, zonation and alteration patterns associated with specific classes of metallic mineral deposits
Evaluate different processes of element enrichment by fluids and melts to from ore bodies.

•Students learn about the fundamentals of mineral prospecting, exploration of minerals and fossil fuels

Course Outcome:

CO1: Identify ore minerals in hand specimen and under reflected microscope.

CO2: Assess mineral paragenesis and textures and thereby reconstruct ore genesis

CO3: Understand the distribution and tectonic settings of ore minerals and fossil fuels

CO4: Characterise each type of ore deposits, occurrence and mineralogy

Lesson Plan

Unit/ session/hours (time required)	Topics for student preparation (input)	Procedure (process) Student centric method of teaching	Activity	Learning outcome (output)	Assessment
Module 1 Fundamentals of economic geology and classification of mineral deposit 15 hours	Definitions- specification of minerals and major classifications of minerals	Discussion Lecture Participative learning	Assignment	To recollect the fundamental terms and concepts in economic geology.	Evaluation through Quiz
Module 2 Major theories of ore genesis 15 hours	Major theories and mineralisation at plate boundaries	Discussion Lecture	Seminar	To interpret and reconstruct ore genesis.	Evaluation through class test
Module 3 Ores in igneous rocks 15 hours	Association of ore minerals with mafic and ultramafic rocks	Discussion Lecture Participative learning	Assignment	To characterise the origin of ore minerals and its association	Evaluation through class test
Module 4 Strategic minerals and National Mineral Policy	Strategic ,critical and essential minerals,Salient features of MMRD act and NMP	Discussion Lecture Participative learning	Seminar	To understand the present status of country's mineral production	Evaluation through Quiz

4hours					
Module 5 Coal and petroleum Geology	Fossil fuel- origin and distribution	Discussion Lecture	Seminar	To understand distribution, origin of	Evaluation through MCQ
15 hours				fossil fuels	

UNIT WISE BREAKUP

Lecture Hours: 64

OBJECTIVE:

- Students become familiar with formation of a wide range of mineral deposits and fossil fuels, including recognising the overall geometry, zonation and alteration patterns associated with specific classes of metallic mineral deposits
- Evaluate different processes of element enrichment by fluids and melts to from ore bodies.
- Students learn about the fundamentals of mineral prospecting, exploration of minerals and fossil fuels.

Module Number	Topic	No. of Lecture hours	Pre- class activity	Pedagogy (in class) classification of o	Out of class assignment		
Unit 1	Specification of ore minerals	2	To read about basic terms in economic geology	Lecture using ppt	Group Discussion		
Unit 2	Major classification of ore minerals	2		Lecture using ppt	Prepare Assignment		
Unit 3	Ore microscopy	5	To read about physical properties of ore minerals	Lecture using ppt and handspecimen of ore minerals and ore microscope	Group Discussion		
Unit 4	Fluid inclusion	3		Lecture using ppt	Demonstrating various instruments using ppt		
	Module 2 Major theories						
Unit 1		4	To find out important	Lecture using ppt	Group discussion		

p	ine of deology		-	-	
	Metallogenic epochs and provinces		epochs and provinces		
Unit 2	Mineralisation at plate boundaries	4	To read about plate tectonics	Lecture using ppt	Group discussion
Unit 3	Theories and control of ore localisation	4	To read about wall rock alterations	Lecture using ppt	Group discussion
		Module 3 Or	res in igneous roo	cks	
Unit 1	Ores of mafic and ultramafic associations	4	To read about igneous process ;mafic and ultramafic rocks	Lecture using ppt	Prepare assignment
Unit 2	Ores of felsic association	4	To read about felsic minerals	Lecture using ppt	Group discussion
Unit 3	Carbonatite association	4		Lecture using ppt	Group discussion
Unit 4	Anorthosite – Fe –Titanium oxide association	4	To read about Anorthosite	Lecture using ppt.	Group discussion
		Module 4 St	trategic minerals	and Important po	olicies
Unit 1	Genetic classification of U and Thorium	3	To find out Uranium mines in India	Lecture using ppt.	Group discussion
Unit 2	Distribution and geology of important ore minerals in India	5	To prepare a map locating important mines in Rajasthan ,Jharkand and Orissa	Lecture using ppt	Preparing Assignment

and Orissa

Unit 3	Strategic and critical minerlas	4	To identify the strategic reserves of the country	Lecture using ppt	Seminar
Unit 4	National mineral policy	3	To read about present status of country in meral production and policies in mining sector	Lecture using ppt	Seminar
		Module	e 5 Coal and Petr	coleum Geology	
Unit 1	Coal Geology	3	To read about origin and rank of coal	Lecture using ppt	Find out important coal fileds in India and mine safety measures
Unit 2	Petroleum Geology	2	To read about OPEC	Lecture using ppt	Group discussion
Unit 3	Gas Hydrates	1	To read about future potential reserves other than crude oil	Lecture using ppt	Seminar

Teacher in charge: Asha Merin Jolly

COURSE PLAN

GEL 2C 07 Hydrogeology

(SECOND SEMESTER)

DEPARTMENT OF GEOLOGY

Teacher in charge: Dr. Swetha

Course Co Ordinator: Roshini P.P.

GEL 2C 07 Hydrogeology Lecture Hours per week: 4, Credits

4 Internal: 20, External: 80

Examination 2.5 Hours

Objectives:

- a) To provide the concepts related to the occurrence, movement and distribution of groundwater, which is a prime resource for development of a civilization.
- b) To familiarize the students with various groundwater exploration methods and able to use them to solve practical problems.
- c) To impart necessary knowledge in students to solve current water resource problems and to anticipate, mitigate and prevent future problems in the area of water resources management.

Module I

Origin of water: meteroic, juvenile, magmatic and sea waters, Hydrologic cycle: precipitation, runoff, infiltration and evapotranspiration, Hydrographs. Subsurface movement and vertical distribution of groundwater, Springs. Classification of aquifers. Concepts of drainage basin and groundwater basin. Hydrological properties of rocks – specific yield, specific retention, porosity, hydraulic conductivity, transmissivity, storage coefficient. Determination of permeability in laboratory and in field. Water table fluctuations – causative factors, concept of barometric and tidal efficiencies. Water table contour maps. **(15 Hours, 15marks)**

Module II

Theory of groundwater flow. Forces causing ground water movements. Darcy's Law and its applications. Unconfined, confined, steady, unsteady and radial flow conditions. Pump tests – methods, data analysis and interpretation for hydrogeologic boundaries. Evaluation of aquifer parameters using Thiem, Theis, Jacob and Walton methods.

(15 Hours, 20marks)

Module III

Groundwater quality – physical and chemical properties of water. Quality criteria for different uses - domestic, irrigation and industrial. Graphical presentation of water quality data - Stiff diagram, Pie diagram, Piper's trilinear diagram and USSL diagram. Problems of arsenic and fluoride in groundwater. Saline water intrusion in coastal and other aquifers. Ghyben-Herzberg relation. Prevention and control of saline water intrusion. Radioisotopes in hydrogeological studies.

(10 Hours, 10marks)

Module IV

Ground water exploration -Geologic and hydrogeologic methods. Surface geophysical methods –electrical resistivity method: Wenner and Schlumberger configurations for vertical electrical sounding. Subsurface geophysical methods – well logging for delineation of aquifers. Remote sensing for groundwater exploration - hydrogeomorphic mapping of the terrain using different images of different satellite missions, lineament mapping, shallow groundwater potential zone mapping using satellite images. **(12 Hours, 15 marks)**

Module V

Types of wells, drilling methods, construction, design, development and maintenance of wells, specific capacity and its determination. Groundwater problems related to foundation work, mining, canals and tunnels. Problems of over exploitation and groundwater mining. Groundwater development in urban areas and rain water harvesting, Artificial recharge methods. Groundwater provinces of India. **(12 Hours, 15marks)**

Reference Books:

- 1. Kevin M. Hiscock, Hydrogeology Principles and Practice, 2005
- 2. Bouwer, H Groundwater Hydrology. 1978
- 3. Davies and De Wiest, Hydrogeology, John Wiley and Sons, 1966
- 4. Dominico, P. A.. Concepts and models in Groundwater Hydrogeology, McGrawHill
- 5. Fletcher, G. Driscoll, Groundwater and wells, Science Publ., Jodhpur, 1986
- 6. Karanth, K. R., Groundwatcr and wells, Science Publ., Jodhpur, 1986
- 7. Linsley, R. K., Jkohler, M. A., and Paulhus, J. L. H., Applied Hydrology, Tata McGrawHill, 1975
- 8. Raghunath, H. M., Groundwater, Wiley Eastern, 1987
- 9. Todd, D. K., Groundwater Hydrology, John Wiley and Sons, 1980

- 10. Tolman, C. F., Groundwater, McGraw Hill
- 11. Walton, W. C, Groundwater Resource Evaluation, McGraw Hill, 1970
- 12. Freeze and Cherry Groundwater.
- 13. Willis D.Weight Hydrogeology Field Manual
- 14. Rick Brassington, Field Hydrogeology

Objectives

- a) To provide the concepts related to the occurrence, movement and distribution of groundwater, which is a prime resource for development of a civilization.
- b) To familiarize the students with various groundwater exploration methods and able to use them to solve practical problems
- c) To impart necessary knowledge in students to solve current water resource problems and to anticipate, mitigate and prevent future problems in the area of water resources management

Course Outcomes

CO1: Students understand the essential components and function of the hydrologic cycle including precipitation, evaporation/evapotranspiration, drainage basin characteristics, types of aquifers and its hydrological properties, and water table conditions

CO2: Students will be able to know basic methods for measuring and analyzing hydrological parameters and the principles of groundwater flow.

CO3: Students can understand the various water quality parameters and quality criteria to adequately protect the resource for the various uses, effects of over drafting in terms of salinization and application of isotope techniques in hydrological studies.

CO4: Students can transfer knowledge on the application of Remote sensing technique and geophysical methods for groundwater exploration and multi influencers responsible for the groundwater potential of an area.

CO5: Students can understand the science and engineering fundamentals related to groundwater problems, different methods and importance of rain water harvesting and artificial recharge methods for groundwater development.

Unit/ session/ hours (time Required)	Topics for student preparati on(input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessment
Module 1 Introduction to Hydrogeology and its various aspect 15 hours	Definitions- concept of Hydrological cycle, Infiltration: factors affecting infiltration- Hydrograph concepts assumptions and limitations	Discussion Participation PPT	Peer Group Discussion on Hydrological properties of rocks. Seminars Preparation and interpretation of water table contour maps	To Provide a background in the theory of hydrological processes and their measurement	Evaluation Through tests/seminar Observation
Module-2 Factors governing ground water flow and equations 15 Hours	Groundwater flow conditions- Aquifer parameter evaluation	Lecture Problems PPT	Peer Group Discussion, Groundwater flow direction mapping and problems on aquifer properties (porosity, permeability, void ratio)	Students can understand the principle of groundwater flow in the nature	Evaluation through participation
Module-3 Water quality parameters and criteria 10 Hours	Major ions in groundwater and various graphical representation of water quality data	Lecture Discussion practical Learning	Go through national/interna tional level articles and to understand various Water quality problems	Students to be able to interpret groundwater chemical data and correlate the geology with the groundwater chemistry	Evaluation through secondary data analysis and interpretation

Course Plan Even Semester M.Sc

PG Department of Geology

[2021]

Unit/ session/ hours (time Required)	Topics for student preparati on (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessm ent
Module-4: Groundwater exploration 12 Hours	Vertical Electrical Sounding and configurations	Discussion PPT Experiential Learning	Field study Data Interpretation	Students will get a systematic awareness of the various methods and techniques used to measure, analyze groundwater system and forecast their variability	Group activity Involvement Participation Tests
Module-5: Groundwater over exploitation problems and various method for sustainable management of the resource 12 Hours	Groundwater province in India and facing groundwater problems at present	Lecture Discussion Participative Learning	Identify groundwater problems of their own places from Central and state groundwater department reports	Students understand concepts of various groundwater problems, Wells: designing and drilling	Group activity Involvement Participation

Course Plan Even Semester M.Sc

PG Department of Geology [2021]

UNIT WISE BREAK UP

LECTURE HOURS:64

Objectives:

- a) To provide the concepts related to the occurrence, movement and distribution of groundwater, which is a prime resource for development of a civilization.
- b) To familiarize the students with various groundwater exploration methods and able to use them to solve practical problems.
- c) To impart necessary knowledge in students to solve current water resource problems and to anticipate, mitigate and prevent future problems in the area of water resources management.

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
	Module 1 :I	ntroduc	tion to Hydrogeolog	gy (15 Hours)	
Unit 1.	Hydrologic cycle, movement and distribution of groundwater, water table maps	5	Read and develop knowledge of Hydrogeologi cal units	Lecture and Discussion	To make Short note on Hydrological cycle
Unit 2.	Subsurface movement and occurrence of groundwater	5	Read and develop knowledge about groundwater occurrence	Lecture and Discussion	Read about groundwater occurrence in various aquifers
Unit 3	Hydrological properties of rocks	5	Read and develop knowledge about aquifer properties	Lecture PPT	To make shortnotes on the hydrological properties of rocks
	Module 2	: Ground	lwaterflow and aqu	ifer conditions	
Unit 1.	Theory of groundwate flow	5 er	(15Hours) Prepare groundwater flow pattern of a drainage basin	Lecture and Discussion	Learn about groundwater modeling and its applications

Unit 2.	Pumping test method and its analysis and interpretation	5	Visit pumping test site of state groundwater department	Lecture and Discussion and videos	Expert discussion
	Module 3: V	Water	quality parameter	s (10 Hours)	
Unit 1	Groundwater quality	5	To go through various publication and learn water quality mapping	Lecture and Discussion	Learn about softwares using to plot and interpret water quality parameters
Unit 2	Groundwater quality problems due to Arsenic-fluoride and salt water intrusion	5	To read on the reasons for groundwater contaminations	Lecture Discussion	Instruments using to measure major ions in groundwater
	Mod	ule 4 :	Groundwater expl	oration	
Unit 1.	Groundwater exploration surface methods	6	(12 Hours) To study how a geophysical survey can be	Lecture and PPT	Assignments Seminar
Unit 2.	Groundwater exploration using Remote sensing methods	6	set up To read about satellite missions and images can use in groundwater exploration	Lecture and Illustration s	Collect papers of groundwater potential zone identification
	Module 5 : Groundwate	-		for sustainable n	nanagement of the
Unit 1	Types of wells; Drilling methods and maintenance	6	To go through books and online reports about drilling methods	Lecture and Illustrations	Makes notes Seminar
Unit 2	Groundwater problems due to engineering works and over exploitation; groundwater development methods	6	To study about how identify artificial recharge site of an area	Lecture and Illustrations	Assignment and viva

Teacher in Charge:

Course Plan Even Semester M.Sc

COURSE PLAN

GEL 2C 08 - APPLIED PALAEONTOLOGY AND SEDIMENTOLOGY

(SECOND SEMESTER)

Dept. of Geology & Env. Science

Teacher in charge	NIMMY, P. M.	
Course Co ordinator	Roshini P.P.	Roshin

GEL 2C 08 - APPLIED PALAEONTOLOGY AND SEDIMENTOLOGY

Lecture hours per week : 5, credits : 4

Internal: 20 External: 80, Examination 3 Hours

Objectives

- To learn how to identify different microfossils and interpret their wide range of applications
- To acquire knowledge about the evolution histories of vertebrates
- To build the basic knowledge about sedimentary processes, textures and structures and its significance
- To introduce concepts of sedimentary facies and depositional environments

Module 1:

Fossils and fossilisation Definition and morphology. Modes of preservation and geometry of fossils. Physico- chemical conditions of fossilisation. Significance of fossils.

(5 hours, 10 marks)

Module 2:

Vertebrate paleontology: Succession of vertebrate life through geologic time. Broad classification. General characteristics and Evolution histories of Dinosaurs, Equus, Elephus and Man.

(15 hours, 10 marks)

Module 3:

Micropalaeontology - Scope and classification of microfossils. Techniques in collection, separation, preparation and preservation of microfossils. Classification, morphology, ecology, palaeoecology and stratigraphic importance of the following -Foraminifera, Ostracoda, Bryozoa, Radiolaria, Diatoms and Conodonts. Palynology: General morphology of spores and pollens -classifications. geological significance and Application of microfossils the petroleum applications. in exploration. palaeoenvironments, Palaeoecology Palaeoclimate. Estimation and of Palaeotemperature.

> (20 hours, 20 marks)

Module 4:
Sedimentary processes, lithification and diagenesis of siliceous and Carbonate sediments. Elements of Hydraulics - behaviour of particles in fluids. Heavy minerals and their significance in Provenance studies.

(10 hours, 10 marks)

Sedimentary Textures - Grain size classification, grade scale and sediment classes. Grain size analysis-sieving and pipette analysis, graphic representation of size analysis data; statistical parameters and their geological significance. Sedimentary structures: classification, genesis and significance.

> (15 hours, 15 marks)

Module 6:

Module 5:

Sedimentary Facies and Depositional environments - Terrestrial, marine and transitional environments. Lithologies and structures formed in various environments. Brief description about Basin analysis. Plate Tectonics and sedimentation.

(15 hours,

15 marks)

Reference Books:

- 1. Shrock R.R., Berk Twenhofel W.H. Principles of Invertebrate Palaeontology, McGraw Hill, 1953
- 2. Colebert H. Edwin, Evolution of the vertebrates, John Wiley and Sons, 1961
- 3. Biial u. Haq Anne Boersma, Introduction to Marine Micro-Palaeontology, Elsevier, 1998
- 4. Woods Henry, Invertebrate Palaeontology, Cambridge University Press, 1961
- Tucker, Sedimentary Petrology: An introduction. John Willey & Sons, New York, 1981
- 6. Gary Nichols, Sedimentology and Stratigraphy, Wiley and Blackwell, 2009
- 7. S.M. Sengupta, Introduction to Sedimentology, CBS Publishers & Distributors Pvt. Ltd.

Objectives

- To learn how to identify different microfossils and interpret their wide range of applications
- To acquire knowledge about the evolution histories of vertebrates
- To build the basic knowledge about sedimentary processes, textures and structures and its significance
- To introduce concepts of sedimentary facies and depositional environments

Course Outcomes

CO1: The role of microfossils in petroleum exploration

- CO2: Understanding the evolution history of ancient life
- CO3: Significance of heavy minerals in provenance studies
- CO4: Detailed understanding of basin analysis and sedimentation

Lesson Plan

Unit/ session/hours (time required)	Topics for student preparatio n (input)	Procedu re (process) Student centric method of teaching	Activity	Learning outcome (output)	Assessme nt
Module 1 Fossils and Fossilisation 10 hours	Fossils – Definition, Modes of preservation of fossils, Significance of fossils	Discussi on Lecture	Seminar	To understand the basics of paleontolo gy.	Evaluatio n through class test
Module 2 Vertebrate paleontology 10 hours	Broad classificatio n, General characterist ics and Evolution histories of Dinosaurs, Equus, Elephus and Man	Discussi on Lecture	Assignme nt	To understand evolution history.	Evaluatio n through class test
Module 3 Micropaleontol ogy 20 hours	Microfossil s, its classificatio n and application s, preparation techniques of important	Discussi on Lecture	Note preparati on	To identify different microfossil s and get a knowledge about its application	Evaluatio n through class test

	microfossil s				
Module 4 Sedimentary processes 10 hours	Lithification and diagenesis of siliceous and Carbonate sediments Heavy minerals and their significance in Provenance studies	Discussi on Lecture	Seminar	To interpret the sedimentar y processes and to understand significanc e of heavy minerals in provenanc e studies	Evaluatio n through class test
Module 5 Sedimentary Textures and structures 15 hours	Grain size classificatio n and analysis, classificatio n, genesis and significanc e of sedimentar y structures	Discussi on Lecture	Note preparati on	To identify different sedimentar y textures and structures and understand its significanc e	Evaluatio n through class test
Module 6 Sedimentary facies and depositional environments 15 hours	Terrestrial, marine and transitional environmen ts. Lithologies and structures formed in various environmen ts. Brief description about Basin analysis.	Discussi on Lecture	Assignme nt	Understand the depositiona l environmen t of a sedimentar y rock based on recognition of facies associations	Evaluatio n through class test

UNIT WISE BREAKUP

Lecture Hours: 80

Objectives

- To learn how to identify different microfossils and interpret their wide range of applications
- To acquire knowledge about the evolution histories of vertebrates
- To build the basic knowledge about sedimentary processes, textures and structures and its significance
- To introduce concepts of sedimentary facies and depositional environments

Module Numbe r	Торіс	No. of Lectur e hours	Pre- class activity	Pedagog y (in class)	Out of class assignmen t
	Module	1 Fossils	and fossilizati	on	
Unit 1	Definition of fossils and how fossilisation take place	2	To read about basics of fossils	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 2	Modes of preservation of fossils	1	To read about different methods of preservation	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 3	Physico- chemical conditions of fossilisation. Significance of fossils.	3	To read about significance of fossils	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers

Module 2 Vertebrate paleontology					
Unit 1	Succession of vertebrate life through geologic time. Broad classification.	6	To read about vertebrate life	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 2	General characteristics and Evolution histories of Dinosaurs, Equus	2	To read about evolution history	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 3	General characteristics and Evolution histories of Elephus and Man	2	To read about evolution history	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
	Modu	ile 3 Micro	opalaeontology		
Unit 1	Scope and classification of microfossils.	2	Watch the images of different microfossils	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 2	Techniques in collection, separation, preparation and preservation of microfossils	4	To read about preparation techniques of microfossils	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 3	Classification, morphology, ecology,	5	Watch the SEM images of different	Lecture using ppt	Group Discussion ,

	palaeoecology and stratigraphic importance of the following - Foraminifera, Ostracoda, Bryozoa		species of Foraminifera , Ostracoda, Bryozoa		Answering competitiv e exam question papers
Unit 4	Classification, morphology, ecology, palaeoecology and stratigraphic importance of the following- Radiolaria, Diatoms and Conodonts	5	Watch the SEM images of different species Radiolaria, Diatoms and Conodonts	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 5	Palynology: General morphology of spores and pollens –classifications. geological significance and Application	3	Watch the images of spores and pollens	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
Unit 6	Application of microfossils in the petroleum exploration, palaeoenvironment s, Palaeoecology and Palaeoclimate. Estimation of Palaeotemperature	1	To read about applications of microfossils	Lecture using ppt	Group Discussion , Answering competitiv e exam question papers
	Modul	e 4 Sedime	entary processe	s	
Unit 1	Lithification and diagenesis of siliceous and Carbonate sediments.	3	Read about lithification and diagenesis	Lecture using ppt	Group Discussion
Unit 2	Elements of Hydraulics - behaviour of particles in fluids.	3	Read about Elements of Hydraulics	Lecture using ppt	Group Discussion
Unit3	Heavy minerals and their significance in	4	Read about Heavy minerals and their	Lecture using ppt	Group Discussion

	Provenance studies.		significance in Provenance		
			studies		
	Module 5 Sedi	imentary 7	Textures and St	ructures	
Unit 1	Grain size classification, grade scale and sediment classes.	5	Read about grain size classificatio n	Lecture using ppt	Group Discussion
Unit 2	Grain size analysis-sieving and pipette analysis, graphic representation of size analysis data; statistical parameters and their geological significance.	5	Read about Grain size analysis	Lecture using ppt	Group Discussion
Unit 3	Sedimentary structures: classification, genesis and significance	5	Read about Sedimentary structures	Lecture using ppt	Group Discussion
Γ	Module 6 Sedimenta	ry Facies a	and Deposition	al environm	ents
Unit 1	Terrestrial, marine and transitional environments.	5	Read about different depositional environment s	Lecture using ppt	Group Discussion
Unit 2	Lithologies and structures formed in various environments	5	Read about Lithologies and structures formed in various environment s	Lecture using ppt	Group Discussion
Unit 2	Brief description about Basin analysis. Plate Tectonics and sedimentation	5	Read about basin analysis and plate tectonics	Lecture using ppt	Group Discussion

M.Sc. Applied Geology

Course	Title	Contact Hours	Credits	Internal	External	Total Marks
Core	GEL 4C 10 GEOCHEMISTRY &ISOTOPE GEOLOGY	96	4	25	125	150
Core	GEL 4E 04a EXPLORATION GEOLOGY	96	4	25	125	150
Core	GEL 4E 05 a ENGINEERING GEOLOGY	80	4	25	125	150

SEMESTER 4

COURSE PLAN

GEL 4C 10 - GEOCHEMISTRY AND ISOTOPE GEOLOGY (FOURTH SEMESTER)

Department of Geology and Environmental Sciences

Teacher In Charge	Dr. C V Nandini	Nandiak ffi
Course Co ordinator	Roshini P.P.	Rostin

GE 4C 10- Geochemistry and Isotope Geology Lecture Hours per week: 6, Credits: 4 Internal: 20, External: 80, Examination 3 Hours

Objectives:-

- To understand the application of chemical principles in Earth Science
- To learn the fundamentals of geochemistry , Isotope Geochemistry and its applications in Geoscience

Module 1:

Overview of the origin of the elements. Nuclides and atoms. Electronic configuration of atoms arrangement of atoms in periodic table, electronegativity, ionization potential, chemical bonding. Chemistry of the universe, stars, nucleosynthesis, origin of the solar system, meteorites. Structure and composition of earth. Distribution of elements in core, mantle, hydrosphere and atmosphere

(20 hours; 12

marks)

Module 2:

Elementary crystal chemistry and thermodynamics, Temperature and Equations of State; Laws of thermodynamics; Entropy; Enthalpy; Gibbs free energy; Trace elements and REE and their importance in fractional crystallization during magmatic/partial melting. Geochemistry of weathering transportation and deposition.

(20 hours; 15 marks)

Module 3:

Introduction to isotope geochemistry; applications in magmatic systems Major, minor and trace elements and their representation on variation and discriminant diagrams for presentation of geochemical data (bivariate, multivariate, element ratio variation, enrichment-depletion and vector diagrams) Geochemical cycle and principles of geochemical prospecting.

(16 hours; 15 marks)

Module 4:

Radioactivity, Decay of radioactive atoms and growth of radiogenic atoms, Geochronology and age of the Earth: Law of Radioactivity; Principles of isotopic dating, Decay schemes and Derivation of equation of age. Radiogenic isotope systems: K-Ar; Rb-Sr, Sm-Nd; Lu-Hf; Re-Os; U-Th–Pb methods of dating.

(20 hours, 20 marks)

Module 5:

Stable isotope systems; Notations; Mass independent fractionation; H, C, O, N and S isotopic systems Introduction to non-traditional stable isotope systems and their applications, Modern Analytical techniques: Methods based on Flame photometer, Spectrophotometer, AAS, XRF, ICP-MS, TIMS, SIMS, SHRIMP. Fission track and other radiation damage methods of dating

(20 hours; 18 marks)

Essential Reading:

1. Albarède, F., 2009. Geochemistry: An Introduction. Cambridge University Press, 356 p.

2. Faure, G., 1998. Principles and Applications of Geochemistry. Pearson, 624 p.

3. Faure, G., Mensing, T.M., Isotopes: Principles and Applications. Wiley, 928 p.

4. Hoefs, J., 2015. Stable Isotope Geochemistry. 7th Edition, Springer, 389 p. 5. White, W.M., 2015. Isotope Geochemistry. Wiley, 492 p

Course Outcomes

CO 1:- Students will understand the basics of Geochemistry and its application in earth science

CO 2: learn in details about the various basics of chemical bonding and it's role in Geological studies

CO 3:- Will understand the basic principle and applications of Isotopes and radiogenic atoms

CO 4:- Come across in details on radio radio active decay and different dating methods CO:-5 Introduction to the modern analytical techniques like AAS, Spectrophotometer, ICP-MS, XRF etc.,

Lesson Plan

Objectives: -

- To understand the application of chemical principles in Earth Science
- To learn the fundamentals of geochemistry, Isotope Geochemistry and its applications in Geoscience

UNIT/ SESSION/ HOURS (TIME	MODULE -1	
REQUIRED)	OVERVIEW OF THE ORIGIN OF THE ELEMENTS	
TOPICS FOR STUDENT PREPARATION (INPUT)	Nuclides and atoms. Electronic configuration of atoms arrangement of atoms in periodic table, electronegativity, ionization potential, chemical bonding. Chemistry of the universe, stars, nucleosynthesis, origin of the solar system, meteorites. Structure and composition of earth. Distribution of elements in core, mantle, hydrosphere and atmosphere	
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Discussion on the basic concepts in chemistry and its core application in Geology. Giving a fundamentals through diagrams and charts	
ACTIVITY	Power point preparation, Having individual and group interaction with students	

LEARNING OUTCOME (OUTPUT) Will learn the basic principles in Geochemistry

Through Quiz and unit exams

UNIT/ SESSION/ HOURS (TIME M REQUIRED)

MODULE-2

ELEMENTARY CRYSTAL CHEMISTRY AND THERMODYNAMICS, GEOCHEMISTRY OF WEATHERING

TOPICSFOR
PREPARATION (INPUT)STUDENTTemperature and Equations of State;
Laws of thermodynamics; Entropy;
Enthalpy; Gibbs free energy; Trace
elements and REE and their importance
in fractional crystallization during
magmatic/partial melting. Geochemistry
of weathering transportation and
deposition.

Course Plan-2021

ASSESSMENT

PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Question and Answer session with students. Having discussion on previous class topics, Lecturing
ACTIVITY	Power Point presentation, Showing diagrams and pictures of the topic
LEARNING OUTCOME (OUTPUT)	An idea on magmatic melting and geochemistry of weathered material
ASSESSMENT	Quiz and Unit Exams

UNIT/ SESSION/ HOURS (TIME REQUIRED)	MODULE- 3 INTRODUCTION TO ISOTOPE GEOCHEMISTRY AND APPLICATIONS, GEOCHEMICAL PROSPECTING
TOPICS FOR STUDENT PREPARATION (INPUT)	Major, minor and trace elements and their representation on variation and discriminant diagrams for presentation of geochemical data (bivariate, multivariate, element ratio variation, enrichment-depletion and vector diagrams) Geochemical cycle and principles of geochemical prospecting.
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lecturing, Question and Answer session before starting the class, Discussions and doubt clearing of the current session.
ACTIVITY	Power point presentation, Seminars
LEARNING OUTCOME (OUTPUT)	Learn in details on Geochemical cycle and various geochemical prospecting
ASSESSMENT	Quiz and Unit exams

UNIT/	SESSION/	HOURS	(TIME	MODULE-4
REQUI	RED)			RADIOACTIVITY, VARIOUS
				RADIOGENIC ISOTOPE SYSTEMS

the stable isotope and radio active

TOPICS FOR STUDENT PREPARATION (INPUT)	Decay of radioactive atoms and growth of radiogenic atoms, Geochronology and age of the Earth: Law of Radioactivity; Principles of isotopic dating, Decay schemes and Derivation of equation of age. Radiogenic isotope systems: K-Ar; Rb-Sr, Sm-Nd; Lu-Hf; Re-Os; U-Th–Pb methods of dating.
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lectures and Discussions; Question and Answer Session
ACTIVITY	Power Point presentation, Seminars
LEARNING OUTCOME (OUTPUT)	Understanding the age of earth using the half-life equation and different methods of isotope dating
ASSESSMENT	Quiz and Unit exams; Assignments
UNIT/ SESSION/ HOURS (TIME REQUIRED)	MODULE-5 STABLE ISOTOPE SYSTEMS AND MODERN ANALYTICAL TECHNIQUES
, , , ,	STABLE ISOTOPE SYSTEMS AND
REQUIRED) TOPICS FOR STUDENT	STABLE ISOTOPE SYSTEMS AND MODERN ANALYTICAL TECHNIQUESNotations;Massindependentfractionation;H, C, O, N and S isotopicsystemsIntroduction to non-traditionalstableisotopesystemsapplications,ModernAnalyticaltechniques:Methodsbasedphotometer,Spectrophotometer,AAS,XRF, ICP-MS, TIMS, SIMS, SHRIMP.Fission track and other radiation damage

LEARNING OUTCOME (OUTPUT)Students will understand in details about

isotopes. Will have a clear knowledge on various analytical instruments

ASSESSMENT

Students will understand

UNIT WISE BREAK UP (Lecture hours -96)

Objectives: -

- To understand the application of chemical principles in Earth Science
- To learn the fundamentals of geochemistry, Isotope Geochemistry and its applications in Geoscience

Module 1	Module 1 :- Overview of the origin of the elements (20 hours)				
Numbe r	Торіс	No. of Lectur e Hours	Pre- class activity	Pedagogy (in class)	Out of class assignmen t
Unit1	Overview of the origin of the elements.	2	Check the knowledge on Periodic Table	Lecturing, Question and Answerin g,	Note submissio n and seminars
Unit 2	Nuclides and atoms. Electronic configuration of atoms arrangement of atoms in periodic table, electronegativit y, ionization potential, chemical bonding.	6	Question and Answering session, Discussion on the previous class topics and clarification of doubts.	Lecturing and Discussio n	Note Submissio n and Seminars
Unit 3	Chemistry of the universe, stars, nucleosynthesis , origin of the	6	Show diagrams and charts	Explain using diagrams, Lecturing	Note submissio n and Seminars

	solar system, meteorites.			and discussion	
Unit 4	Structure and composition of earth.	2	Prepare a schematic representatio n of interior of earth	Lecturing using diagrams and pictures	Note submissio n and seminars
Unit 5	Distribution of elements in core, mantle, hydrosphere and atmosphere	4	Prepare a chart of elements	Lecturing and discussion s	Note submissio n and seminar; Quiz and open book test

Module 2 :- Elementary crystal chemistry and thermodynamics, Geochemistry of weathering (20 hours)					
Numbe r	Торіс	No. of Lectur e Hours	Pre- class activity	Pedagogy (in class)	Out of class assignmen t
Unit1	Elementary crystal chemistry and thermodynamics	4	Prepare a chart of equations	Lecturing using diagrams and charts	Note submission and Seminar
Unit 2	Temperature and Equations of State; Laws of thermodynamics ; Entropy; Enthalpy; Gibbs free energy;	6	Prepare a chart of equations	Lecturein g using diagrams and charts, also solving the equations	Note submission and seminar
Unit 3	Trace elements and REE and their importance in fractional crystallization during	6	Prepare nice slides of diagrams showing partial melting, Question	Lecturing and discussion	Note Submissio n and Seminar

	magmatic/partia l melting.		and answer session		
Unit 4	Geochemistry of weathering transportation and deposition.	4	Recollectio n of weathering	Lecturing and discussion , Question and Answer Session	Note submission and Seminar, Quiz and MCQ

Module 3 :- Introduction to geochemistry and applications, Geochemical prospecting(16 hours)					
Unit Numbe r	Торіс	No. of Lectur e Hours	Pre- class activity	Pedagogy (in class)	Out of class assignme nt
Unit1	Elementary crystal chemistry and thermodynami cs	4	Give basics of thermodynami cs	Lecturing and Discussion s	Note submissio n and seminar
Unit 2	Major, minor and trace elements and their representation on variation and discriminant diagrams for presentation of geochemical data (bivariate, multivariate, element ratio variation, enrichment- depletion and vector diagrams)	6	Prepare the diagrammatic representation of geochemical data	Lecturing an Discussion	Note submissio n and Seminar

Unit 3	Geochemical cycle and principles of geochemical prospecting	6	Prepare a schematic presentation of geochemical cycle	Lecturing and discussion; PPT presentatio n of all the diagrams.	Note submissio n and seminar; Quiz and MCQ
--------	---	---	---	--	---

Module 4	Module 4 :- Radioactivity, various radiogenic isotope systems (20 hours)				
Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Unit1	Radioactivity, Decay of radioactive atoms and growth of radiogenic atoms	5	Give an account of history of radioactivity	Lecturing and discussion	Note submission and seminar
Unit 2	Geochronology and age of the Earth: Law of Radioactivity; Principles of isotopic dating, Decay schemes and Derivation of equation of age.	7	Prepare the half life period chart of elements and discuss	Lecturing and Discussion	Note submission and seminar
Unit 3	Radiogenic isotope systems: K-Ar; Rb-Sr, Sm-Nd; Lu-Hf; Re-Os; U-Th–Pb methods of dating.	8	Prepare the charts of all equations	Lecturing and discussion; Doubt clearing of the topics, Group discussion	Note submission and seminar; Quiz and MCQ

Module 5 :- Stable isotope system and modern analytical techniques (20 hours)

Numbe r	Торіс	No. of Lectur e Hours	Pre- class activity	Pedagogy (in class)	Out of class assignme nt
Unit1	Stable isotope systems; Notations; Mass independent fractionation; H, C, O, N and S isotopic systems	4	Schematic diagrams of stable isotopes	Lecturing and Discussion s;	Note submissio n and seminar
Unit 2	Introduction to non-traditional stable isotope systems and their applications	3	Introduction on traditional stable isotopes	Lecturing and Discussion s;	Note submissio n and Seminars
Unit 3	Modern Analytical techniques: Methods based on Flame photometer, Spectrophotomet er, AAS, XRF, ICP- MS, TIMS, SIMS, SHRIMP.	10	Understandi ng of the importance of various instruments	Lecturing and discussion	Note submissio n and seminars
Unit 4	Fission track and other radiation damage methods of dating	3	Understand about Zeolite	Lecturing and discussion; Group discussion;	Note submissio n and seminar, Quiz and MCQ

COURSE PLAN

GEL 4E 04a - EXPLORATION GEOLOGY (FOURTH SEMESTER)

Department of Geology and Environmental Sciences

Teacher In Charge	Gopakumar P G	
Course Co ordinator	Roshini P.P.	Rospin

GEL 4E 04a - EXPLORATION GEOLOGY

Lecture hours per week: 6; credits: 4 Internal: 20, external: 80, examination: 3hours

Objectives

- a) To equip the students with a detailed knowledge about the exploration techniques used to locate the ore bodies and other valuable materials
- b) To enable students the knowledge about the drilling and logging methods
- c) To get a detailed theoretic knowledge about mineral exploration using advanced techniques

Module 1

Methods of surface and subsurface exploration. Prospecting for economic minerals. Drilling and its types. Different methods of sampling and assaying. Methods of ore reserve estimation.

(15 hours ,13 marks)

Module 2

Geochemical exploration techniques. Mobility of elements, pathfinder elements, threshold values and geochemical anomalies. Mode of occurrence of trace elements. Primary dispersion pattern of deep-seated origin. Diffusion and leakage anomalies. Geochemical surveys, principles and methods of sampling. Anomalies in ground and surface waters and sediments. Biochemical anomalies. Geobotanical survey techniques. Geobotanical indicators.

(26 hours,

20 marks)

Module 3

Geophysical exploration - Principles, scope, chief methods and their application. Electrical methods - principles, instruments used. Self-potential methods, resistivity methods. Application in ground water exploration.

(20 hours, 15 marks)

Module 4

Gravity methods - Density and rock types, correlation of gravity data, regional and local anomalies. Sample interpretation, instrument used -gravimeter. Magnetic methods - field procedure, magnetometer, interpretation of magnetic data, correlations and applications. Principles of air borne survey. Seismic method- Seismic waves, travel velocity in various geological formations – Principles Field operations. Refraction and reflection survey - correction of seismic data - methods if interpretation -determination of attitude and depth of formation. Various types of shooting. Seismic instruments and records. **(20 hours, 18**)

marks)

Module 5

Radiometric methods principles of radioactivity, methods, types of counters: G.M. counters and Scintillometers. Field methods and interpretations. Geophysical well logging Electrical, radiometric, sonic and thermal logging of boreholes.

(15hours, 14 marks)

Reference books:

- 1. Compton.R.R., Manual of Field Geology, John Wiley
- 2. Dobrin M.B, Introduction to Geophysical Prospecting, Pergamon Press
- 3. Elements of Prospecting and Exploration, Kalyan Publishers
- 4. Ginzburg, I., Principles of Geochefnical prospecting, Pergamon Press
- 5. Griflithis, D. and Kind, R. F., Applied Geophysics for Geologists and Engineers, Pergamon Press
- 6. Kovalarkim, Biochemical exploration for mineral deposits Co-Xinian Press
- 7. Lahee, F. H., Field Geology, Mc Graw Hill
- 8. Low, G.W., Geological Field Methods, Harper and brothers
- 9. Malyyuga, D.F., Biochemical methods of prospecting, Consultants Bureau, NewYork
- 10. Reedman, J. H., Techniques in Mineral Exploration, Allied Scientific Publishers

Course outcome:-

CO1:- To get a detailed knowledge about the ore estimation and surface subsurface exploration methods

CO2:- To familiarise with the geochemical exploration methods and sampling techniques

CO3:- To study about the geophysical exploration methods used to find the ore bodies and

ground water

CO4:- To know about the methods like gravity, magnetic and seismic methods for the exploration of minerals

CO5:- To know about the radiometric exploration methods to find the radioactive minerals

and also to know about the well logging methods.

Lesson Plan

Objectives

- a) To equip the students with a detailed knowledge about the exploration techniques used to locate the ore bodies and other valuable materials
- b) To enable students the knowledge about the drilling and logging methods
- c) To get a detailed theoretic knowledge about mineral exploration using advanced techniques

UNIT/	SESSION/	HOURS	(TIME	MODULE-1		
REQUII	RED)				ON WITH	SUBSURFACE H SAMPLING URS)

TOPICS FOR STUDENT PREPARATION (INPUT)	Methods of surface and subsurface exploration. Prospecting for economic minerals. Drilling and its types. Different methods of sampling and assaying. Methods of ore reserve estimation.
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lecture Discussion Different problem situation analysis
ACTIVITY	Power point presentation, Showing various videos showing drilling
LEARNING OUTCOME (OUTPUT)	Will have understanding of different types of sampling and drilling.
ASSESSMENT	Question answer session and solving real scenarios

UNIT/ SESSION/ HOURS (TIME REQUIRED)	MODULE :- 2 GEOCHEMICAL EXPLORATION TECHNIQUE(26 HOURS)
TOPICS FOR STUDENT PREPARATION (INPUT)	Geochemical exploration techniques. Mobility of elements, pathfinder elements, threshold values and geochemical anomalies. Mode of occurrence of trace elements. Primary dispersion pattern of deep-

	seated origin. Diffusion and leakage anomalies. Geochemical surveys, principles and methods of sampling. Anomalies in ground and surface waters and sediments. Biochemical anomalies. Geobotanical survey techniques. Geobotanical indicators.		
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lecture		
	Discussion		
	Different problem situation analysis		
ACTIVITY	Power point presentation, seminars		
LEARNING OUTCOME (OUTPUT)	Understanding on different types of anomalies and surveys		
ASSESSMENT	Question answer session and solving real scenarios		

UNIT/ SESSION/ HOURS (TIME	MODULE :-3	
REQUIRED)	GEOPHYSICAL EXPLORATION (20 HOURS)	
TOPICS FOR STUDENT PREPARATION (INPUT)	Geophysical exploration - Principles, scope, chief methods and their application. Electrical methods - principles, instruments used. Self- potential methods, resistivity methods. Application in ground water exploration.	
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lecture	
CENTRIC METHOD OF TEACHING	Discussion	
	Different natural hazard situation analysis and demonstration with working models	
ACTIVITY	Power point presentations and videos; Seminars and Assignments	

LEARNING OUTCOME (OUTPUT)	Knowledge and understanding about various Geophysical exploration methods		
ASSESSMENT	Question answer session and solving real scenarios		
UNIT/ SESSION/ HOURS (TIME REQUIRED)	MODULE :-4 GRAVITY, MAGNETIC AND SEISMIC		
	METHODS FOR EXPLORATION (20 HOURS)		
TOPICS FOR STUDENT PREPARATION (INPUT)	Gravity methods - Density and rock types, correlation of gravity data, regional and local anomalies. Sample interpretation, instrument used - gravimeter. Magnetic methods - field procedure, magnetometer, interpretation of magnetic data, correlations and applications. Principles of air borne survey. Seismic method- Seismic waves, travel velocity in various geological formations – Principles Field operations. Refraction and reflection survey - correction of seismic data - methods if interpretation – determination of attitude and depth of formation. Various types of shooting. Seismic instruments and records.		
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lecture Discussion		
	Different geological setting analysis		
ACTIVITY	Power point presentation and videos, Seminars, Exposure to real time surveys		
LEARNING OUTCOME (OUTPUT)	Understanding of principles and field operations of gravity, magnetics and seismic methods		

ASSESSMENT	Question answer session and solving real scenarios		
UNIT/ SESSION/ HOURS (TIME REQUIRED)	MODULE :-5 RADIOMETRIC METHODS FOR EXPLORATION (15 HOURS)		
TOPICS FOR STUDENT PREPARATION (INPUT)	Radiometric methods principles of radioactivity, methods, types of counters: G.M. counters and Scintillometers. Field methods and interpretations. Geophysical well logging Electrical, radiometric, sonic and thermal logging of boreholes.		
PROCEDURE (PROCESS) STUDENT CENTRIC METHOD OF TEACHING	Lecture Discussion Different scenario analysis		
ACTIVITY	Power point presentation, seminars, and exposure to real time scenarios.		
LEARNING OUTCOME (OUTPUT)	Understanding of filed methods of radiometric methods and different types of well logging		
ASSESSMENT	Question answer session and solving real scenarios		

Unit wise breakup (Lecture hours: 96)

Objective:

- a) To equip the students with a detailed knowledge about the exploration techniques used to locate the ore bodies and other valuable materials
- b) To enable students the knowledge about the drilling and logging methods.
- c) To get a detailed theoretic knowledge about mineral exploration using advanced techniques

Module :-1 Planning, design, construction and problems of major civil structures (15 hours)

Numbe r	Торіс	No. of Lectur e Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Unit 1	Geological studies and evaluation in planning, design, construction and problems of major civil structures.	6	Introductio n to mining activities	Lecture using multimedia presentatio n	Note submissio n on the related topics
Unit 2	Elementary concepts of rock mechanics and soil mechanics. Site investigatio n techniques for civil engineering structures, Building stone and aggregate properties.	6	Data mining on the topics	Lecture using multimedia presentatio n	Note submissio n on the related topics
Unit 3	Engineering properties of rocks, and soils.	3	Abstract on the topics	Lecture using multimedia presentatio n	Note submissio n on the related topics

and foundations (15 hours)						
Numbe r	Торіс	No. of Lectur e Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment	
Unit 1	Dams: parts, types, forces acting on dams and reservoir problems. Geologic aspects of dam investigation	7	Introductio n d to Dams	Lecture using multimedia presentatio n	Note submissio n on the related topics. Assignme nt of Dam breakages	
Unit 2	Tunnels: parts, classification, ground conditions, geological consideration s. G eological and geotechnical aspects of Bridge, Highways, Foundations.	8	Introduction to Tunnels	Lecture using multimedia presentatio n	Note submissio n on the related topics.	

Module :-2 Analysis of constructions Dams, Tunnels, Bridge, Highway
and foundations (15 hours)

Module:- 3 Natural hazards- understand and mitigate, aseismic designing of building (20 hours)					
	Торіс	No. of	Pre- class	Pedagogy	Out of class
Numbe r		Lectur e	activity	(in class)	assignment

		Hours			
Unit 1	Geological hazards and mitigation- landslides and earth quakes, Landslides: classification , analysis of slope stability, monitoring slope movements, hazard zonation mapping	10	Brief writing about natural hazards	Lecture using multimedia presentatio n	Note submission on the related topics. Assignmen t on natural hazards in Kerala
Unit 2	Aseismic design of building, Geotechnical case studies of major projects in India.	10	Collection of pictures which collapsed in earth quakes and discussio n about faulty design	Lecture using multimedia presentatio n	Note submission on the related topics.

Module:- 4 Different Mining methods and petroleum exploration (15 hours)					
	Торіс	No. of	Pre- class	Pedagogy	Out of class
Numbe r		Lectur e	activity	(in class)	assignment
		Hours			

Unit 1	Mining geology: Planning, exploration, exploratory mining of surfaces and undergroun d mineral deposits (methods and types).	8	YouTube videos about mining of different ores	Lecture using multimedia presentatio n	Note submission on the related topics. Assignmen t and slide presentatio n for each student about different mining methods adapted for different type of ores
Unit 2	Mining methods - Alluvial mining- river sand mining, Mining of beach placers, Clay mining, Coal mining, Seabed mining, Exploration of petroleum	7	Abstract on the environment al hazards of alluvial mining and seabed mining	Lecture using multimedia presentatio n	Note submission on the related topics. Assignmen t on gold rush

Module:- 5 Ore dressing methods and legislation of mining activity in India (10 hours)					
Numbe r	Торіс	No. of Lectur e	Pre- class activity	Pedagogy (in class)	Out of class assignment

		Hours			
Unit 1	Fundamental s of ore dressing: crushing, grinding, sizing, concentration by washing, scrubbing, jigging, tabling, floatation, magnetic and electrostatic separation	7	YouTube video watching on different technique s of ore separation	Lecture using multimedia presentatio n	Note submissio n on the related topics. Animation video making for different ore separation methods
Unit 2	Mineral legislation in India	3	Different case studies in the courts about mining and illegal mining activities	Classes with case studies	News Paper cutting collection about the current issues about mining

COURSE PLAN

GEL 4E 05a - ENGINEERING GEOLOGY

(FOURTH SEMESTER)

DEPARTMENT OF GEOLOGY

Teacher in charge	Gopakumar P.G	Garcer.
Co-Ordinator	Roshini P P	Rashin

GEL 4E 05a - ENGINEERING GEOLOGY

Lecture hours per week: 5; credits: 3

Internal: 20, external: 80, examination: 3hours

Objectives

- d) To equip the students with a detailed knowledge about the civil engineering aspects of geology.
- e) To enable students the knowledge about the major problems arising while constructions of large civil structures.

Module 1

Geological studies and evaluation in planning, design, construction and problems of major civil structures. Elementary concepts of rock mechanics and soil mechanics. Site investigation techniques for civil engineering structures, Building stone and aggregate properties. Engineering properties of rocks, and soils. **(20 hours ,20 marks)**

Module 2

Dams: parts, types, forces acting on dams and reservoir problems. Geologic aspects of dam investigation. Tunnels: parts, classification, ground conditions, geological considerations. Geological and geotechnical aspects of Bridge, Highways, Foundations. **(15 hours, 15 marks)**

Module 3

Geological hazards and mitigation- landslides and earth quakes, Landslides: classification, analysis of slope stability, monitoring slope movements, hazard zonation mapping. Aseismic design of building, Geotechnical case studies of major projects in India. **(20 hours, 20 marks)**

Module 4

Mining geology: Planning, exploration, exploratory mining of surfaces and underground mineral deposits (methods and types). Mining methods -Alluvial mining-river sand mining, Mining of beach placers, Clay mining, Coal mining, Seabed mining, Exploration of petroleum. **(15 hours, 15 marks)**

Module 5

Fundamentals of ore dressing: crushing, grinding, sizing, concentration by washing, scrubbing, jigging, tabling, floatation, magnetic and electrostatic separation, mineral legislation in India. **(10 hours, 10 marks)**

Reference books:

1. Compton, R. R., Manual of Field Geology, John Wiley

2. Reedman, J. K, Techniques in Mineral Exploration, Allied Scientific Publishers

3. Arogya swamy, R. N. F., Courses in Mining Geology, Oxford and IBH Pub. Co.

4. Fox, Engineering Geology

5. Peters, W. C, Exploration and Mining Geology, John Wiley

6. Bell, F.G. Fundamentals of Engineering Geology, Butterworths, 1983

7. Krynine and Judd, Principle of Engineering Geology and Geotectonic, McGraw Hill. 1957

8. Rose, A. W., Hawkes, H. F., and Webb, J. S., Geochemistry in Mineral Exploration, Academic Press

9. Gokhale, K.V.G.K. Principles of Engineering Geology B.S. Publications, 2006

Objectives

- a) To equip the students with a detailed knowledge about the civil engineering aspects of geology.
- b) To enable students the knowledge about the major problems arising while constructions of large civil structures.

Course outcome		
M-1	Understand the different methods of civil engineering constructions and problems faced	
M-2	Introduce the dam constructions methods, bridge, tunnel and problems faced in details	
M-3	Understand the natural hazards, its causes. also promote the remedies and prevention of natural hazards. Aware of aseismic building design	
M-4	Understand the open cast and underground mining techniques. Also, about the alluvial mining and seabed mining methods. Introduction to petroleum exploration	
-----	--	
M-5	Analyse and study about the ore dressing methods and mine legislation procedures in India	

Lesson plan

Unit/session/hours	Module 1
(time required)	
	Planning, design, construction and problems of major civil
	r fammig, design, construction and problems of major civit
	structures
	20 hours
Topics for student	
preparation	Geological studies and evaluation in planning, design,
(input)	construction and problems of major civil structures.
	Elementary concepts of rock mechanics and soil mechanics.
	Site investigation techniques for civil engineering structures,
	Building stone and aggregate properties. Engineering
	properties of rocks, and soils.

Procedure (Process) student centric method of teaching	Lecture Discussion Different problem situation analysis
Activity	Collection of different disasters happened in the studied topics and its fault finding
Learning outcome (output)	Over all sight over the planning, designing and construction of civil structures
Assessment	Question answer session and solving real scenarios

	Module 2				
Unit/session/hours (time required)	Analysis of constructions Dams, Tunnels, Bridge, Highway and foundations				
	15 hours				
Topics for student preparation (input)	Dams: parts, types, forces acting on dams and reservoir problems. Geologic aspects of dam investigation. Tunnels: parts, classification, ground conditions, geological considerations. Geological and geotechnical aspects of Bridge, Highways, Foundations.				

Procedure (Process)student centric method of teaching	Lecture Discussion Different problem situation analysis
Activity	Collection of different construction methods of famous Dams, Tunnels, Bridge, Highway and foundations in India and abroad
Learning outcome (output)	Different methods of constructions and the method adaptations to the geological settings
Assessment	Question answer session and solving real scenarios

Unit/session/hours	Module 3
(time required)	Natural hazards- understand and mitigate, aseismic designing of building
	20 hours

Topics for student preparation (input)	Geological hazards and mitigation- landslides and earth quakes, Landslides: classification, analysis of slope stability, monitoring slope movements, hazard zonation mapping. Aseismic design of building, Geotechnical case studies of major projects in India.
Procedure (Process)student centric method of	Lecture
teaching	Discussion
	Different natural hazard situation analysis and demonstration with working models
Activity	Collection of different natural disasters happened all over the world and discuss the strategies to solve future disasters
Learning outcome (output)	A detailed study about the natural disasters and its mitigation methods with earthquake resistance building
Assessment	Question answer session and solving real scenarios

	Module 4
Unit/session/hours	
(time required)	Different Mining methods and petroleum exploration
	15 hours

Topics for student preparation (input)	Mining geology: Planning, exploration, exploratory mining of surfaces and underground mineral deposits (methods and types). Mining methods - Alluvial mining-river sand mining, Mining of beach placers, Clay mining, Coal mining, Seabed mining, Exploration of petroleum
Procedure (Process)student centric method of teaching	Lecture Discussion Different geological setting analysis
Activity	Collection of different huge mining sites all over the world, slide presentation of each with adapted mining method and ore.
Learning outcome (output)	Different mining methods and its implication regarding the geological settings
Assessment	Question answer session and solving real scenarios

Unit/session/hours	Module 5
(time required)	Ore dressing methods and legislation of mining activity in India
	10 hours
Topics for student preparation (input)	Fundamentals of ore dressing: crushing, grinding, sizing, concentration by washing, scrubbing, jigging, tabling, floatation, magnetic and electrostatic separation, mineral legislation in India
Procedure (Process)student centric method of teaching	Lecture Discussion Different scenario analysis
Activity	Assignment on the old mining methods and ore dressing methods, improvement in ore dressing techniques and different clearence certificates to start a mine in India.
Learning outcome (output)	A better overall understanding over the ore dressing methods
Assessment	Question answer session and solving real scenarios

Unit wise breakup

Lecture hours: 80

Objective:

- a) To equip the students with a detailed knowledge about the civil engineering aspects of geology.
- b) To enable students the knowledge about the major problems arising while constructions of large civil structures.

Modul e numb er	Topic	No. of lectur e hours	Pre- class activity	Pedagog y	Out of class assignmen ts		
	Module 1 Planning, design, construction and problems of major civil structures (20 hours)						
Unit 1	Geological studies and evaluation in planning, design, construction and problems of major civil structures.	7	Introduction to mining activities	Lecture using multimedi a presentati on	Note submission on the related topics		

Unit 2	Elementary concepts of rock mechanics and soil mechanics. Site investigation techniques for civil engineering structures, Building stone and	7	Data mining on the topics	Lecture using multimedi a presentati on	Note submission on the related topics
	aggregate properties.				
Unit 3	Engineering properties of rocks, and soils.	6	Abstract on the topics	Lecture using multimedi a presentati on	Note submission on the related topics
Module 2 Analysis of constructions Dams, Tunnels, Bridge, Highway and foundations (15 hours)					
Unit 1	Dams: parts, types, forces acting on dams and reservoir problems. Geologic aspects of dam investigation	7	Introduction d to Dams	Lecture using multimedi a presentati on	Note submission on the related topics. Assignment of Dam breakages
	Tunnels: parts, classification		Introduction to Tunnels	Lecture using multimedi a	Note submission on the

Unit 2	, ground conditions, geological consideratio ns. G eological and geotechnical aspects of Bridge, Highways, Foundations.	8		presentati on	related topics.		
Module 3 Natural hazards- understand and mitigate, aseismic designing of building (20 hours)							
Unit 1	Geological hazards and mitigation- landslides and earth quakes, Landslides: classification , analysis of slope stability, monitoring slope movements, hazard zonation mapping	10	Brief writing about natural hazards	Lecture using multimedi a presentati on	Note submission on the related topics. Assignment on natural hazards in Kerala		
Unit 2	Aseismic design of building, Geotechnical case studies of major	10	Collection of pictures which collapsed in earth quakes and discussion	Lecture using multimedi a	Note submission on the related topics.		

	projects in India.		about faulty design	presentati on					
Module 4 Different Mining methods and petroleum exploration (15 hours)									
Unit 1	Mining geology: Planning, exploration, exploratory mining of surfaces and underground mineral deposits (methods and types).	8	YouTube videos about mining of different ores	Lecture using multimedi a presentati on	Note submission on the related topics. Assignment and slide presentation for each student about different mining methods adapted for different type of ores				
Unit 2	Mining methods - Alluvial mining-river sand mining, Mining of beach placers, Clay mining, Coal mining, Seabed mining, Exploration of petroleum	7	Abstract on the environmen tal hazards of alluvial mining and seabed mining	Lecture using multimedi a presentati on	Note submission on the related topics. Assignment on gold rush				

Module 5 Ore dressing methods and legislation of mining activity in India (10 hours)							
Unit 1	Fundamental s of ore dressing: crushing, grinding, sizing, concentratio n by washing, scrubbing, jigging, tabling, floatation, magnetic and electrostatic separation	7	YouTube video watching on different techniques of ore separation	Lecture using multimedi a presentati on	Note submission on the related topics. Animation video making for different ore separation methods		
Unit 2	Mineral legislation in India	3	Different case studies in the courts about mining and illegal mining activities	Classes with case studies	News Paper cutting collection about the current issues about mining		

garen.

Teacher in Charge: Gopakumar P G